Pasar al contenido principal

Studies on the Structure, Optical, and Electrical Properties of Doped Manganese (III) Phthalocyanine Chloride Films for Optoelectronic Device Applications

Autor/es Anáhuac
María E. Sánchez-Vergara; María José Canseco-Juárez; José Ramón Álvarez-Bada
Año de publicación
2022
Journal o Editorial
Coatings

Abstract
In the last few years, significant advances have been achieved in the development of organic semiconductors for use in optoelectronic devices. This work reports the doping and deposition of semiconducting organic thin films based on manganese (III) phthalocyanine chloride (MnPcCl). In order to enhance the semiconducting properties of the MnPcCl films, different types of pyridine-based chalcones were used as dopants, and their influence on the optical and electric properties of the films was analyzed. The morphology and structure of the films were studied using IR spectroscopy and scanning electron microscopy (SEM). Optical properties of MnPcCl–chalcone films were investigated via UV–Vis spectroscopy, and the absorption spectra showed the Q band located between 630 and 800 nm, as well as a band related to charge transfer (CT) in the region between 465 and 570 nm and the B band in the region between 280 and 460 nm. Additionally, the absorption coefficient measurements indicated that the films had an indirect transition with two energy gaps: the optical bandgap of around 1.40 eV and the fundamental gap of around 2.35 eV. The electrical behavior is strongly affected by the type of chalcone employed; for this reason, electrical conductivity at room temperature may vary from 1.55 × 10−5 to 3.02 × 101 S·cm−1 at different voltages (0.1, 0.5, and 1.0 V). Additionally, the effect of temperature on conductivity was also measured; electrical conductivity increases by two orders of magnitude with increasing temperature from 25 to 100◦C. The doping effect of chalcone favors electronic transport, most likely due to its substituents and structure with delocalized π-electrons, the formation of conduction channels caused by anisotropy, and the bulk heterojunction induced by the dopant. In terms of optical and electrical properties, the results suggest that the best properties are obtained with chalcones that have the methoxy group as a substituent. However, all MnPcCl–chalcone films are candidates for use in optoelectronic devices.